Your browser doesn't support javascript.
loading
Sorting Transcriptomics Immune Information from Tumor Molecular Features Allows Prediction of Response to Anti-PD1 Therapy in Patients with Advanced Melanoma.
Trilla-Fuertes, Lucía; Gámez-Pozo, Angelo; Prado-Vázquez, Guillermo; López-Vacas, Rocío; Zapater-Moros, Andrea; López-Camacho, Elena; Lumbreras-Herrera, María I; Soriano, Virtudes; Garicano, Fernando; Lecumberri, Mª José; Rodríguez de la Borbolla, María; Majem, Margarita; Pérez-Ruiz, Elisabeth; González-Cao, María; Oramas, Juana; Magdaleno, Alejandra; Fra, Joaquín; Martín-Carnicero, Alfonso; Corral, Mónica; Puértolas, Teresa; Ramos, Ricardo; Fresno Vara, Juan Ángel; Espinosa, Enrique.
Afiliação
  • Trilla-Fuertes L; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Gámez-Pozo A; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Prado-Vázquez G; Biomedica Molecular Medicine SL, 28049 Madrid, Spain.
  • López-Vacas R; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Zapater-Moros A; Biomedica Molecular Medicine SL, 28049 Madrid, Spain.
  • López-Camacho E; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Lumbreras-Herrera MI; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Soriano V; Biomedica Molecular Medicine SL, 28049 Madrid, Spain.
  • Garicano F; Biomedica Molecular Medicine SL, 28049 Madrid, Spain.
  • Lecumberri MJ; Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.
  • Rodríguez de la Borbolla M; Instituto Valenciano de Oncología, 46009 Valencia, Spain.
  • Majem M; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • Pérez-Ruiz E; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • González-Cao M; Hospital de Galdakao, 48960 Bizkaia, Spain.
  • Oramas J; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • Magdaleno A; Complejo Hospitalario de Navarra, 31008 Pamplona, Spain.
  • Fra J; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • Martín-Carnicero A; Hospital de Valme, 41014 Sevilla, Spain.
  • Corral M; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • Puértolas T; Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
  • Ramos R; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
  • Fresno Vara JÁ; Hospital Costa del Sol, 29603 Marbella, Spain.
  • Espinosa E; Spanish Melanoma Group (GEM), 08024 Barcelona, Spain.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article em En | MEDLINE | ID: mdl-36614248
Immunotherapy based on anti-PD1 antibodies has improved the outcome of advanced melanoma. However, prediction of response to immunotherapy remains an unmet need in the field. Tumor PD-L1 expression, mutational burden, gene profiles and microbiome profiles have been proposed as potential markers but are not used in clinical practice. Probabilistic graphical models and classificatory algorithms were used to classify melanoma tumor samples from a TCGA cohort. A cohort of patients with advanced melanoma treated with PD-1 inhibitors was also analyzed. We established that gene expression data can be grouped in two different layers of information: immune and molecular. In the TCGA, the molecular classification provided information on processes such as epidermis development and keratinization, melanogenesis, and extracellular space and membrane. The immune layer classification was able to distinguish between responders and non-responders to immunotherapy in an independent series of patients with advanced melanoma treated with PD-1 inhibitors. We established that the immune information is independent than molecular features of the tumors in melanoma TCGA cohort, and an immune classification of these tumors was established. This immune classification was capable to determine what patients are going to respond to immunotherapy in a new cohort of patients with advanced melanoma treated with PD-1 inhibitors Therefore, this immune signature could be useful to the clinicians to identify those patients who will respond to immunotherapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha