Your browser doesn't support javascript.
loading
Sn-Ag Synergistic Effect Enhances High-Rate Electrocatalytic CO2 -to-Formate Conversion on Porous Poly(Ionic Liquid) Support.
Duan, Xiu-Qiang; Duan, Guo-Yi; Wang, Yao-Feng; Li, Xiao-Qiang; Wang, Rui; Zhang, Rui; Xu, Bao-Hua.
Afiliação
  • Duan XQ; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
  • Duan GY; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
  • Wang YF; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
  • Li XQ; Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
  • Wang R; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
  • Zhang R; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
  • Xu BH; Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
Small ; 19(18): e2207219, 2023 May.
Article em En | MEDLINE | ID: mdl-36720005
ABSTRACT
The electrocatalytic transformation of carbon dioxide (CO2 ) to formate is a promising route for highly efficient conversion and utilization of CO2 gas, due to the low production cost and the ease of storage of formate. In this work, porous poly(ionic liquid) (PPIL)-based tin-silver (Sn-Ag) bimetallic hybrids (PPILm -Snx Ag10- x ) are prepared for high-performance formate electrolytic generation. Under optimal conditions, an excellent formate Faradaic efficiency of 95.5% with a high partial current density of 214.9 mA cm-2 is obtained at -1.03 V (vs reversible hydrogen electrode). Meanwhile, the high selectivity of formate (>≈83%) is maintained in a wide potential range (>630 mV). Mechanistic studies demonstrate that the presence of Ag-species is vital for the formation, maintenance, and high dispersion of tetravalent Sn(IV)-species, which accounts for the active sites for CO2 -to-formate conversion. Further, the introduction of Ag-species significantly enhances the activity by increasing the electron density near the Fermi energy level.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China