Your browser doesn't support javascript.
loading
AI reveals insights into link between CD33 and cognitive impairment in Alzheimer's Disease.
Raschka, Tamara; Sood, Meemansa; Schultz, Bruce; Altay, Aybuge; Ebeling, Christian; Fröhlich, Holger.
Afiliação
  • Raschka T; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
  • Sood M; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany.
  • Schultz B; Fraunhofer Center for Machine Learning, Sankt Augustin, Germany.
  • Altay A; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
  • Ebeling C; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany.
  • Fröhlich H; Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
PLoS Comput Biol ; 19(2): e1009894, 2023 02.
Article em En | MEDLINE | ID: mdl-36780558
Modeling biological mechanisms is a key for disease understanding and drug-target identification. However, formulating quantitative models in the field of Alzheimer's Disease is challenged by a lack of detailed knowledge of relevant biochemical processes. Additionally, fitting differential equation systems usually requires time resolved data and the possibility to perform intervention experiments, which is difficult in neurological disorders. This work addresses these challenges by employing the recently published Variational Autoencoder Modular Bayesian Networks (VAMBN) method, which we here trained on combined clinical and patient level gene expression data while incorporating a disease focused knowledge graph. Our approach, called iVAMBN, resulted in a quantitative model that allowed us to simulate a down-expression of the putative drug target CD33, including potential impact on cognitive impairment and brain pathophysiology. Experimental validation demonstrated a high overlap of molecular mechanism predicted to be altered by CD33 perturbation with cell line data. Altogether, our modeling approach may help to select promising drug targets.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha