Your browser doesn't support javascript.
loading
Coding long COVID: characterizing a new disease through an ICD-10 lens.
Pfaff, Emily R; Madlock-Brown, Charisse; Baratta, John M; Bhatia, Abhishek; Davis, Hannah; Girvin, Andrew; Hill, Elaine; Kelly, Elizabeth; Kostka, Kristin; Loomba, Johanna; McMurry, Julie A; Wong, Rachel; Bennett, Tellen D; Moffitt, Richard; Chute, Christopher G; Haendel, Melissa.
Afiliação
  • Pfaff ER; University of North Carolina at Chapel Hill, Chapel Hill, USA. epfaff@email.unc.edu.
  • Madlock-Brown C; University of Tennessee Health Science Center, Memphis, USA.
  • Baratta JM; University of North Carolina at Chapel Hill, Chapel Hill, USA.
  • Bhatia A; University of North Carolina at Chapel Hill, Chapel Hill, USA.
  • Davis H; Patient-Led Research Collaborative, New York, USA.
  • Girvin A; Palantir Technologies, Denver, USA.
  • Hill E; University of Rochester, Rochester, USA.
  • Kelly E; University of North Carolina at Chapel Hill, Chapel Hill, USA.
  • Kostka K; Northeastern University, Boston, USA.
  • Loomba J; University of Virginia, Charlottesville, USA.
  • McMurry JA; University of Colorado Anschutz Medical Campus, Aurora, USA.
  • Wong R; Stony Brook University, Stony Brook, USA.
  • Bennett TD; University of Colorado Anschutz Medical Campus, Aurora, USA.
  • Moffitt R; Stony Brook University, Stony Brook, USA.
  • Chute CG; Johns Hopkins University, Baltimore, USA.
  • Haendel M; University of Colorado Anschutz Medical Campus, Aurora, USA.
BMC Med ; 21(1): 58, 2023 02 16.
Article em En | MEDLINE | ID: mdl-36793086
BACKGROUND: Naming a newly discovered disease is a difficult process; in the context of the COVID-19 pandemic and the existence of post-acute sequelae of SARS-CoV-2 infection (PASC), which includes long COVID, it has proven especially challenging. Disease definitions and assignment of a diagnosis code are often asynchronous and iterative. The clinical definition and our understanding of the underlying mechanisms of long COVID are still in flux, and the deployment of an ICD-10-CM code for long COVID in the USA took nearly 2 years after patients had begun to describe their condition. Here, we leverage the largest publicly available HIPAA-limited dataset about patients with COVID-19 in the US to examine the heterogeneity of adoption and use of U09.9, the ICD-10-CM code for "Post COVID-19 condition, unspecified." METHODS: We undertook a number of analyses to characterize the N3C population with a U09.9 diagnosis code (n = 33,782), including assessing person-level demographics and a number of area-level social determinants of health; diagnoses commonly co-occurring with U09.9, clustered using the Louvain algorithm; and quantifying medications and procedures recorded within 60 days of U09.9 diagnosis. We stratified all analyses by age group in order to discern differing patterns of care across the lifespan. RESULTS: We established the diagnoses most commonly co-occurring with U09.9 and algorithmically clustered them into four major categories: cardiopulmonary, neurological, gastrointestinal, and comorbid conditions. Importantly, we discovered that the population of patients diagnosed with U09.9 is demographically skewed toward female, White, non-Hispanic individuals, as well as individuals living in areas with low poverty and low unemployment. Our results also include a characterization of common procedures and medications associated with U09.9-coded patients. CONCLUSIONS: This work offers insight into potential subtypes and current practice patterns around long COVID and speaks to the existence of disparities in the diagnosis of patients with long COVID. This latter finding in particular requires further research and urgent remediation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 / Síndrome de COVID-19 Pós-Aguda Tipo de estudo: Diagnostic_studies Limite: Female / Humans Idioma: En Revista: BMC Med Assunto da revista: MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: COVID-19 / Síndrome de COVID-19 Pós-Aguda Tipo de estudo: Diagnostic_studies Limite: Female / Humans Idioma: En Revista: BMC Med Assunto da revista: MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos