Your browser doesn't support javascript.
loading
Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62.
Magot, Florent; Van Soen, Gwendoline; Buedenbender, Larissa; Li, Fengjie; Soltwedel, Thomas; Grauso, Laura; Mangoni, Alfonso; Blümel, Martina; Tasdemir, Deniz.
Afiliação
  • Magot F; GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
  • Van Soen G; GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
  • Buedenbender L; GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
  • Li F; Centro Interdisciplinar de Química e Bioloxía (CICA), Facultade de Ciencias, Universidade de Coruña, 15071 Coruna, Spain.
  • Soltwedel T; GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
  • Grauso L; Section Deep-Sea Ecology and Technology, Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany.
  • Mangoni A; Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy.
  • Blümel M; Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
  • Tasdemir D; GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany.
Mar Drugs ; 21(2)2023 Jan 28.
Article em En | MEDLINE | ID: mdl-36827136
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus Resistente à Meticilina Idioma: En Revista: Mar Drugs Assunto da revista: BIOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus Resistente à Meticilina Idioma: En Revista: Mar Drugs Assunto da revista: BIOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha