Your browser doesn't support javascript.
loading
In Vivo Pharmacokinetic and Pharmacodynamic Properties of the Antiarrhythmic Molecule ent-Verticilide.
Blackwell, Daniel J; Smith, Abigail N; Do, Tri; Gochman, Aaron; Schmeckpeper, Jeffrey; Hopkins, Corey R; Akers, Wendell S; Johnston, Jeffrey N; Knollmann, Bjorn C.
Afiliação
  • Blackwell DJ; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Smith AN; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Do T; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Gochman A; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Schmeckpeper J; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Hopkins CR; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Akers WS; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Johnston JN; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
  • Knollmann BC; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (D.J.B., J.S., B.C.K.); Departments of Chemistry (A.N.S., J.N.J.) and Pharmacology (A.G., W.S.A), and Vanderbilt Institute of Chemical Biology (A.N.S., J.N.J.), Vanderbilt University, Nashville, Tennessee; Pharmaceuti
J Pharmacol Exp Ther ; 385(3): 205-213, 2023 06.
Article em En | MEDLINE | ID: mdl-36894328
ABSTRACT
The unnatural verticilide enantiomer (ent-verticilide) is a selective and potent inhibitor of cardiac ryanodine receptor (RyR2) calcium release channels and exhibits antiarrhythmic activity in a murine model of catecholaminergic polymorphic ventricular tachycardia (CPVT). To determine verticilide's pharmacokinetic and pharmacodynamic properties in vivo, we developed a bioassay to measure nat- and ent-verticilide in murine plasma and correlated plasma concentrations with antiarrhythmic efficacy in a mouse model of CPVT. nat-Verticilide rapidly degraded in plasma in vitro, showing >95% degradation within 5 minutes, whereas ent-verticilide showed <1% degradation over 6 hours. Plasma was collected from mice following intraperitoneal administration of ent-verticilide at two doses (3 mg/kg, 30 mg/kg). Peak C max and area under the plasma-concentration time curve (AUC) scaled proportionally to dose, and the half-life was 6.9 hours for the 3-mg/kg dose and 6.4 hours for the 30-mg/kg dose. Antiarrhythmic efficacy was examined using a catecholamine challenge protocol at time points ranging from 5 to 1440 minutes after intraperitoneal dosing. ent-Verticilide inhibited ventricular arrhythmias as early as 7 minutes after administration in a concentration-dependent manner, with an estimated potency (IC50) of 266 ng/ml (312 nM) and an estimated maximum inhibitory effect of 93.5%. Unlike the US Food and Drug Administration-approved pan-RyR blocker dantrolene, the RyR2-selective blocker ent-verticilide (30 mg/kg) did not reduce skeletal muscle strength in vivo. We conclude that ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development. SIGNIFICANCE STATEMENT ent-Verticilide has therapeutic potential to treat cardiac arrhythmias, but little is known about its pharmacological profile in vivo. The primary purpose of this study is to determine the systemic exposure and pharmacokinetics of ent-verticilide in mice and estimate its efficacy and potency in vivo. The current work suggests ent-verticilide has favorable pharmacokinetic properties and reduces ventricular arrhythmias with an estimated potency in the nanomolar range, warranting further drug development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Taquicardia Ventricular / Canal de Liberação de Cálcio do Receptor de Rianodina Tipo de estudo: Guideline Limite: Animals Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Taquicardia Ventricular / Canal de Liberação de Cálcio do Receptor de Rianodina Tipo de estudo: Guideline Limite: Animals Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article