Your browser doesn't support javascript.
loading
Effects of folate on telomere length and chromosome stability of human fibroblasts and melanoma cells in vitro: a comparison of folic acid and 5-methyltetrahydrofolate.
Wang, Han; Ni, Juan; Guo, Xihan; Xue, Jinglun; Wang, Xu.
Afiliação
  • Wang H; School of Life Sciences, Yunnan Normal University, Yunnan, China.
  • Ni J; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China.
  • Guo X; School of Life Sciences, Yunnan Normal University, Yunnan, China.
  • Xue J; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, Yunnan 650500, China.
  • Wang X; School of Life Sciences, Yunnan Normal University, Yunnan, China.
Mutagenesis ; 38(2): 100-108, 2023 05 12.
Article em En | MEDLINE | ID: mdl-36932659
ABSTRACT
Telomere length (TL), which is maintained by human telomerase reverse transcriptase (hTERT; component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay. Results showed that abnormal TL elongation was observed in FA- and 5-MeTHF-deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA-deficient condition but was significantly elongated under the 5-MeTHF-deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression, and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and -positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telomerase / Melanoma Limite: Humans Idioma: En Revista: Mutagenesis Assunto da revista: GENETICA MEDICA / SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telomerase / Melanoma Limite: Humans Idioma: En Revista: Mutagenesis Assunto da revista: GENETICA MEDICA / SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China