RHOJ controls EMT-associated resistance to chemotherapy.
Nature
; 616(7955): 168-175, 2023 04.
Article
em En
| MEDLINE
| ID: mdl-36949199
The resistance of cancer cells to therapy is responsible for the death of most patients with cancer1. Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells2,3. However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ-a small GTPase that is preferentially expressed in EMT cancer cells-controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Cutâneas
/
Carcinoma de Células Escamosas
/
Resistencia a Medicamentos Antineoplásicos
/
Proteínas rho de Ligação ao GTP
/
Transição Epitelial-Mesenquimal
Tipo de estudo:
Risk_factors_studies
Limite:
Animals
Idioma:
En
Revista:
Nature
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Bélgica