Confinement of Pyridine Derivatives into a Metal-Organic Framework Host as Electron Acceptors to Achieve Photoinduced Electron-Transfer.
Inorg Chem
; 62(17): 6688-6695, 2023 May 01.
Article
em En
| MEDLINE
| ID: mdl-37074372
The photoinduced electron-transfer (ET) process plays an irreplaceable role in chemical and biological fields exemplified by enzymatic catalysis, artificial photosystems, solar energy conversion, and so forth. Searching for a new photoinduced ET system is of great importance for the development of functional materials. Herein, a series of host-guest compounds based on a magnesium metal-organic framework (Mg-MOF) as a host and pyridine derivatives as guests have been presented. Notably, strong O-H···N hydrogen bond between the oxygen atom of µ2-H2O and the nitrogen atom of pyridine enables proton delocalization between water molecule and pyridine guest. Despite the absence of photochromic modules in these host-guest compounds, long-lived charge-separated states with distinct color changes can be formed after UV-light irradiation. The substituents in pyridines and the proton delocalization ability between the host and guests have a great influence on their photoinduced ET process to endow the MOF materials with tunable photoinduced charge-separated states.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Ano de publicação:
2023
Tipo de documento:
Article