Your browser doesn't support javascript.
loading
Variation in histone configurations correlates with gene expression across nine inbred strains of mice.
Tyler, Anna L; Spruce, Catrina; Kursawe, Romy; Haber, Annat; Ball, Robyn L; Pitman, Wendy A; Fine, Alexander D; Raghupathy, Narayanan; Walker, Michael; Philip, Vivek M; Baker, Christopher L; Mahoney, J Matthew; Churchill, Gary A; Trowbridge, Jennifer J; Stitzel, Michael L; Paigen, Kenneth; Petkov, Petko M; Carter, Gregory W.
Afiliação
  • Tyler AL; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Spruce C; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Kursawe R; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Haber A; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Ball RL; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Pitman WA; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Fine AD; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Raghupathy N; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Walker M; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Philip VM; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Baker CL; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Mahoney JM; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Churchill GA; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Trowbridge JJ; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Stitzel ML; The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA.
  • Paigen K; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
  • Petkov PM; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA; petko.petkov@jax.org gregory.carter@jax.org.
  • Carter GW; The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine 04609, USA.
Genome Res ; 33(6): 857-871, 2023 06.
Article em En | MEDLINE | ID: mdl-37217254
ABSTRACT
The Diversity Outbred (DO) mice and their inbred founders are widely used models of human disease. However, although the genetic diversity of these mice has been well documented, their epigenetic diversity has not. Epigenetic modifications, such as histone modifications and DNA methylation, are important regulators of gene expression and, as such, are a critical mechanistic link between genotype and phenotype. Therefore, creating a map of epigenetic modifications in the DO mice and their founders is an important step toward understanding mechanisms of gene regulation and the link to disease in this widely used resource. To this end, we performed a strain survey of epigenetic modifications in hepatocytes of the DO founders. We surveyed four histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac), as well as DNA methylation. We used ChromHMM to identify 14 chromatin states, each of which represents a distinct combination of the four histone modifications. We found that the epigenetic landscape is highly variable across the DO founders and is associated with variation in gene expression across strains. We found that epigenetic state imputed into a population of DO mice recapitulated the association with gene expression seen in the founders, suggesting that both histone modifications and DNA methylation are highly heritable mechanisms of gene expression regulation. We illustrate how DO gene expression can be aligned with inbred epigenetic states to identify putative cis-regulatory regions. Finally, we provide a data resource that documents strain-specific variation in the chromatin state and DNA methylation in hepatocytes across nine widely used strains of laboratory mice.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Metilação de DNA Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Histonas / Metilação de DNA Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Genome Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos