Your browser doesn't support javascript.
loading
Three-Dimensional Modeling of the Optical Switch Based on Guided-Mode Resonances in Photonic Crystals.
Rehman, Atiq Ur; Khan, Yousuf; Irfan, Muhammad; Choudri, Shahzaib; Khonina, Svetlana N; Kazanskiy, Nikolay L; Butt, Muhammad A.
Afiliação
  • Rehman AU; Nanophotonics Research Group, Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan.
  • Khan Y; Nanophotonics Research Group, Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan.
  • Irfan M; Nanophotonics Research Group, Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan.
  • Choudri S; Nanophotonics Research Group, Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan.
  • Khonina SN; Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia.
  • Kazanskiy NL; IPSI RAS-Branch of the FSRC "Crystallography and Photonics" RAS, 443001 Samara, Russia.
  • Butt MA; Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia.
Micromachines (Basel) ; 14(6)2023 May 26.
Article em En | MEDLINE | ID: mdl-37374701
ABSTRACT
Optical switching is an essential part of photonic integrated circuits and the focus of research at the moment. In this research, an optical switch design working on the phenomenon of guided-mode resonances in a 3D photonic-crystal-based structure is reported. The optical-switching mechanism is studied in a dielectric slab-waveguide-based structure operating in the near-infrared range in a telecom window of 1.55 µm. The mechanism is investigated via the interference of two signals, i.e., the data signal and the control signal. The data signal is coupled into the optical structure and filtered utilizing guided-mode resonance, whereas the control signal is index-guided in the optical structure. The amplification or de-amplification of the data signal is controlled by tuning the spectral properties of the optical sources and structural parameters of the device. The parameters are optimized first using a single-cell model with periodic boundary conditions and later in a finite 3D-FDTD model of the device. The numerical design is computed in an open-source Finite Difference Time Domain simulation platform. Optical amplification in the range of 13.75% is achieved in the data signal with a decrease in the linewidth up to 0.0079 µm, achieving a quality factor of 114.58. The proposed device presents great potential in the field of photonic integrated circuits, biomedical technology, and programmable photonics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Paquistão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Paquistão