Your browser doesn't support javascript.
loading
Flos populi (Male Inflorescence of Populus tomentosa Carrière) Aqueous Extract Suppresses Salmonella Pullorum Infection by Affecting T3SS-1.
Zhang, Wenting; Liang, Guixing; Cheng, Zhenyu; Guo, Yunqing; Jiang, Boda; Liu, Tingjiang; Liao, Weidong; Lu, Qin; Wen, Guoyuan; Zhang, Tengfei; Luo, Qingping.
Afiliação
  • Zhang W; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Liang G; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Cheng Z; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
  • Guo Y; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Jiang B; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Liu T; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Liao W; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Lu Q; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Wen G; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Zhang T; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
  • Luo Q; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
Pathogens ; 12(6)2023 May 31.
Article em En | MEDLINE | ID: mdl-37375480
ABSTRACT
Pullorum disease, caused by Salmonella Pullorum (S. Pullorum), is one of the most serious infectious diseases in the poultry industry. Flos populi is traditionally used in Eastern Asian countries to treat various intestinal diseases. However, the anti-infection mechanism of Flos populi is not very clear. In this study, we evaluated the anti-infective effects on S. Pullorum of Flos populi aqueous extract (FPAE) in chickens. FPAE significantly reduced S. Pullorum growth in vitro. At the cellular level, FPAE reduced S. Pullorum adhesion and invasion on DF-1 cells but did not affect its intracellular survival or replication in macrophages. Further investigation revealed that FPAE inhibited the transcription of T3SS-1 genes, which is the main virulence factor that mediates S. Pullorum adhesion and invasion in host cells. The results suggest that the anti-infective effect of FPAE likely occurs through the inhibition of S. Pullorum T3SS-1, thereby impairing its ability to adhere to and invade cells. Further, we evaluated its therapeutic effect on animal models (Jianghan domestic chickens) and found that FPAE reduced the bacterial loads in organs and decreased the mortality and weight loss of infected chickens. Our findings provide novel insights into the potential development of FPAE against S. Pullorum as an effective anti-virulence therapeutic substitute for antibiotics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Pathogens Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Pathogens Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China