Ultrasensitive and Label-Free Detection of Copper Ions by GHK-Modified Asymmetric Nanochannels.
Anal Chem
; 95(36): 13456-13462, 2023 Sep 12.
Article
em En
| MEDLINE
| ID: mdl-37624577
Artificial solid-state nanochannels have garnered considerable attention as promising nanofluidic tools for ion/molecular detection, DNA sequencing, and biomimicry. Recently, nanofluidic devices have emerged as cost-effective detection tools for heavy metal ions by modifying stimuli-responsive materials. In this work, high-purity glycyl-l-histidyl-l-lysine (GHK) peptide is synthesized by using 7-diphenylphosphonooxycoumarin-4-methanol (DPCM) as a protecting group and auxiliary carrier by homogeneous synthesis of photocleavable groups. Subsequently, we developed a GHK-modified asymmetric nanochannel nanofluidic diode by covalently attaching the GHK peptide to the inner surface of the nanochannels. This modification facilitated specific recognition and ultra-trace level detection of Cu2+ ions, achieving a detection limit of 10-15 M. Due to the robust complexing ability between Cu2+ and GHK peptide, the GHK-modified asymmetric nanochannels can form GHK-Cu complexes on the inner surface of nanochannels when Cu2+ passes through the nanochannels. This results in changes of current-potential (I-V) properties, which facilitated Cu2+ detection. Theoretical calculations confirmed the high affinity of the GHK peptide for Cu2+, thereby ensuring excellent Cu2+ selectivity. To evaluate the applicability of our system for detecting Cu2+ in real-world scenarios, we analyzed the concentration of Cu2+ in tap water. The GHK-Cu complexes could be dissociated by adding EDTA to the solution, enabling the regeneration and reuse of this ultrasensitive and label-free Cu2+ detection system using GHK-modified asymmetric multi-nanochannels. We anticipate that the GHK-modified asymmetric nanochannels will find future applications in the label-free detection of Cu2+ in domestic water.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Anal Chem
Ano de publicação:
2023
Tipo de documento:
Article