Your browser doesn't support javascript.
loading
A response regulator controls Acinetobacter baumannii virulence by acting as an indole receptor.
Cui, Binbin; Guo, Quan; Li, Xia; Song, Shihao; Wang, Mingfang; Wang, Gerun; Yan, Aixin; Zhou, Jianuan; Deng, Yinyue.
Afiliação
  • Cui B; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Guo Q; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Li X; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Song S; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Wang M; School of Pharmaceutical Sciences, Hainan University, Renmin Avenue, Meilan District, Haikou 570228, China.
  • Wang G; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Yan A; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China.
  • Zhou J; School of Biological Sciences, The University of Hong Kong, University Road, Pok Fu Lam Estate, Central and Western District, Hong Kong 999077, China.
  • Deng Y; Integrative Microbiology Research Center, South China Agricultural University, Wushan Road, Wushan Street, Tianhe District Guangzhou 510642, China.
PNAS Nexus ; 2(8): pgad274, 2023 Aug.
Article em En | MEDLINE | ID: mdl-37649583
ABSTRACT
Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PNAS Nexus Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PNAS Nexus Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China