Your browser doesn't support javascript.
loading
In situ and General Multidentate Ligand Passivation Achieves Efficient and Ultra-Stable CsPbX3 Perovskite Quantum Dots for White Light-Emitting Diodes.
Liu, Yongfeng; Shao, Xiuwen; Gao, Zhaoju; Xie, Qingyu; Ying, Yupeng; Zhu, Xiaolin; Pan, Zhangcheng; Yang, Jinpeng; Lin, Hao; Tang, Xiaosheng; Chen, Weiwei; Pei, Wei; Tu, Yusong.
Afiliação
  • Liu Y; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Shao X; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Gao Z; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Xie Q; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Ying Y; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Zhu X; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Pan Z; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Yang J; College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China.
  • Lin H; College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China.
  • Tang X; Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, P. R. China.
  • Chen W; College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China.
  • Pei W; College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China.
  • Tu Y; College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China.
Small ; 20(3): e2305664, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37691085
ABSTRACT
Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein,  we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip,  we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article