Your browser doesn't support javascript.
loading
Exploring the efficacy of metabarcoding and non-target screening for detecting treated wastewater.
Sieber, Guido; Drees, Felix; Shah, Manan; Stach, Tom L; Hohrenk-Danzouma, Lotta; Bock, Christina; Vosough, Maryam; Schumann, Mark; Sures, Bernd; Probst, Alexander J; Schmidt, Torsten C; Beisser, Daniela; Boenigk, Jens.
Afiliação
  • Sieber G; Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany. Electronic address: guido.sieber@uni-due.de.
  • Drees F; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany.
  • Shah M; Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
  • Stach TL; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
  • Hohrenk-Danzouma L; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany.
  • Bock C; Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
  • Vosough M; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany.
  • Schumann M; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
  • Sures B; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Aquatic Ecology, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-
  • Probst AJ; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; Centre for Me
  • Schmidt TC; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany.
  • Beisser D; Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
  • Boenigk J; Biodiversity, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Universitätsstraße. 5, Germany.
Sci Total Environ ; 903: 167457, 2023 Dec 10.
Article em En | MEDLINE | ID: mdl-37777125
ABSTRACT
Wastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters. We aimed at assessing the impact of introducing 33 % treated wastewater into a triplicated large-scale mesocosm setup during a 10-day exposure period. Discharge of treated wastewater significantly altered the chemical signature as well as the microeukaryotic and prokaryotic diversity of the mesocosms. Non-target screening, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding detected these changes with significant covariation of the detected pattern between methods. The 18S V9 rRNA gene metabarcoding exhibited superior sensitivity immediately following the introduction of treated wastewater and remained one of the top-performing methods throughout the study. Full-length 16S rRNA gene metabarcoding demonstrated sensitivity only in the initial hour, but became insignificant thereafter. The non-target screening approach was effective throughout the experiment and in contrast to the metabarcoding methods the signal to noise ratio remained similar during the experiment resulting in an increasing relative strength of this method. Based on our findings, we conclude that all methods employed for monitoring environmental disturbances from various sources are suitable. The distinguishing factor of these methods is their ability to detect unknown pollutants and organisms, which sets them apart from previously utilized approaches and allows for a more comprehensive perspective. Given their diverse strengths, particularly in terms of temporal resolution, these methods are best suited as complementary approaches.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article