Your browser doesn't support javascript.
loading
Radiation-Induced De Novo Defects in Metal-Organic Frameworks Boost CO2 Sorption.
Chen, Junchang; Zhang, Mingxing; Shu, Jie; Liu, Shengtang; Dong, Xiao; Li, Chunyang; He, Linwei; Yuan, Mengjia; Wu, Yutian; Xu, Jiahui; Zhang, Duo; Ma, Fuyin; Wu, Guozhong; Chai, Zhifang; Wang, Shuao.
Afiliação
  • Chen J; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Zhang M; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Shu J; Analysis and Testing Center, Soochow University, Suzhou 215123, China.
  • Liu S; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Dong X; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Li C; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • He L; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Yuan M; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Wu Y; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Xu J; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Zhang D; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Ma F; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Wu G; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
  • Chai Z; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
  • Wang S; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
J Am Chem Soc ; 145(43): 23651-23658, 2023 Nov 01.
Article em En | MEDLINE | ID: mdl-37859406
ABSTRACT
Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China