Your browser doesn't support javascript.
loading
Dipolar quantum solids emerging in a Hubbard quantum simulator.
Su, Lin; Douglas, Alexander; Szurek, Michal; Groth, Robin; Ozturk, S Furkan; Krahn, Aaron; Hébert, Anne H; Phelps, Gregory A; Ebadi, Sepehr; Dickerson, Susannah; Ferlaino, Francesca; Markovic, Ognjen; Greiner, Markus.
Afiliação
  • Su L; Department of Physics, Harvard University, Cambridge, MA, USA. lin_su@g.harvard.edu.
  • Douglas A; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Szurek M; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Groth R; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Ozturk SF; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Krahn A; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Hébert AH; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Phelps GA; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Ebadi S; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Dickerson S; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Ferlaino F; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.
  • Markovic O; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
  • Greiner M; Department of Physics, Harvard University, Cambridge, MA, USA.
Nature ; 622(7984): 724-729, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37880438
ABSTRACT
In quantum mechanical many-body systems, long-range and anisotropic interactions promote rich spatial structure and can lead to quantum frustration, giving rise to a wealth of complex, strongly correlated quantum phases1. Long-range interactions play an important role in nature; however, quantum simulations of lattice systems have largely not been able to realize such interactions. A wide range of efforts are underway to explore long-range interacting lattice systems using polar molecules2-5, Rydberg atoms2,6-8, optical cavities9-11 or magnetic atoms12-15. Here we realize novel quantum phases in a strongly correlated lattice system with long-range dipolar interactions using ultracold magnetic erbium atoms. As we tune the dipolar interaction to be the dominant energy scale in our system, we observe quantum phase transitions from a superfluid into dipolar quantum solids, which we directly detect using quantum gas microscopy with accordion lattices. Controlling the interaction anisotropy by orienting the dipoles enables us to realize a variety of stripe-ordered states. Furthermore, by transitioning non-adiabatically through the strongly correlated regime, we observe the emergence of a range of metastable stripe-ordered states. This work demonstrates that novel strongly correlated quantum phases can be realized using long-range dipolar interactions in optical lattices, opening the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos