Your browser doesn't support javascript.
loading
HHCDB: a database of human heterochromatin regions.
Wang, Hongli; Su, Mu; Xing, Jie; Zhou, Jie; Wang, Jinzhang; Chen, Long; Dong, Haomin; Xue, Wenhui; Liu, Yubo; Wu, Qiong; Zhang, Yan.
Afiliação
  • Wang H; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Su M; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Xing J; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Zhou J; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Wang J; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Chen L; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Dong H; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Xue W; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Liu Y; The Leicester International Institute, Dalian University of Technology, Dalian 116000, China.
  • Wu Q; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
  • Zhang Y; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Nucleic Acids Res ; 52(D1): D145-D153, 2024 Jan 05.
Article em En | MEDLINE | ID: mdl-37897357
ABSTRACT
Heterochromatin plays essential roles in eukaryotic genomes, such as regulating genes, maintaining genome integrity and silencing repetitive DNA elements. Identifying genome-wide heterochromatin regions is crucial for studying transcriptional regulation. We propose the Human Heterochromatin Chromatin Database (HHCDB) for archiving heterochromatin regions defined by specific or combined histone modifications (H3K27me3, H3K9me2, H3K9me3) according to a unified pipeline. 42 839 743 heterochromatin regions were identified from 578 samples derived from 241 cell-types/cell lines and 92 tissue types. Genomic information is provided in HHCDB, including chromatin location, gene structure, transcripts, distance from transcription start site, neighboring genes, CpG islands, transposable elements, 3D genomic structure and functional annotations. Furthermore, transcriptome data from 73 single cells were analyzed and integrated to explore cell type-specific heterochromatin-related genes. HHCDB affords rich visualization through the UCSC Genome Browser and our self-developed tools. We have also developed a specialized online analysis platform to mine differential heterochromatin regions in cancers. We performed several analyses to explore the function of cancer-specific heterochromatin-related genes, including clinical feature analysis, immune cell infiltration analysis and the construction of drug-target networks. HHCDB is a valuable resource for studying epigenetic regulation, 3D genomics and heterochromatin regulation in development and disease. HHCDB is freely accessible at http//hhcdb.edbc.org/.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Heterocromatina / Bases de Dados Genéticas Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Heterocromatina / Bases de Dados Genéticas Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China