Your browser doesn't support javascript.
loading
Effect of nitro-conjugated linoleic acid on the inflammatory response of murine macrophages activated with lipopolysaccharide derived from Prevotella intermedia.
Lee, Jung Eun; Lee, Ah Rim; Choi, Eun-Young; Choi, In Soon; Kim, Sung-Jo.
Afiliação
  • Lee JE; Dental and Life Science Institute, Pusan National University, 49 Busandaehak-Ro, Mulgeum-Eup, Yangsan, Gyeongsangnam-Do 50612, Republic of Korea.
  • Lee AR; Department of Biological Science, College of Medical and Life Sciences, Silla University, 140 Baegyang-Daero, 700 Beongil, Sasang-Gu, Busan 46958, Korea.
  • Choi EY; Dental and Life Science Institute, Pusan National University, 49 Busandaehak-Ro, Mulgeum-Eup, Yangsan, Gyeongsangnam-Do 50612, Republic of Korea.
  • Choi IS; Department of Biological Science, College of Medical and Life Sciences, Silla University, 140 Baegyang-Daero, 700 Beongil, Sasang-Gu, Busan 46958, Korea.
  • Kim SJ; Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-Do 50612, Republic of Korea.
Inflammopharmacology ; 32(1): 561-573, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37921960
ABSTRACT
Nitro-conjugated linoleic acid (NO2-CLA) has been observed to manifest salutary signaling responses, including anti-inflammatory and antioxidant properties. Here, the authors have explored the influence and underlying mechanisms of NO2-CLA on the proinflammatory reaction of murine macrophages that were challenged with lipopolysaccharide (LPS) derived from Prevotella intermedia, a putative periodontopathic bacterium. Treatment of LPS-activated RAW264.7 cells with NO2-CLA notably dampened the secretion of iNOS-derived NO, IL-1ß and IL-6 as well as their gene expressions and significantly enhanced the markers for M2 macrophage polarization. NO2-CLA promoted the HO-1 expression in cells challenged with LPS, and tin protoporphyrin IX, an HO-1 inhibitor, significantly reversed the NO2-CLA-mediated attenuation of NO secretion, but not IL-1ß or IL-6. We found that cells treated with NO2-CLA significantly increased mRNA expression of PPAR-γ compared to control cells, and NO2-CLA significantly reverted the decrease in PPAR-γ mRNA caused by LPS. Nonetheless, antagonists to PPAR-γ were unable to reverse the NO2-CLA-mediated suppression of inflammatory mediators. In addition, NO2-CLA did not alter the p38 and JNK activation elicited by LPS. Both NF-κB reporter activity and IκB-α degradation caused by LPS were notably diminished by NO2-CLA. NO2-CLA was observed to interrupt the nuclear translocation and DNA binding of p50 subunits caused by LPS with no obvious alterations in p65 subunits. Further, NO2-CLA attenuated the phosphorylation of STAT1/3 elicited in response to LPS. We propose that NO2-CLA could be considered as a possible strategy for the therapy of periodontal disease, although additional researches are certainly required to confirm this.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lipopolissacarídeos / Ácidos Linoleicos Conjugados Limite: Animals Idioma: En Revista: Inflammopharmacology Assunto da revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lipopolissacarídeos / Ácidos Linoleicos Conjugados Limite: Animals Idioma: En Revista: Inflammopharmacology Assunto da revista: FARMACOLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2024 Tipo de documento: Article