Your browser doesn't support javascript.
loading
Quantum gas mixtures and dual-species atom interferometry in space.
Elliott, Ethan R; Aveline, David C; Bigelow, Nicholas P; Boegel, Patrick; Botsi, Sofia; Charron, Eric; D'Incao, José P; Engels, Peter; Estrampes, Timothé; Gaaloul, Naceur; Kellogg, James R; Kohel, James M; Lay, Norman E; Lundblad, Nathan; Meister, Matthias; Mossman, Maren E; Müller, Gabriel; Müller, Holger; Oudrhiri, Kamal; Phillips, Leah E; Pichery, Annie; Rasel, Ernst M; Sackett, Charles A; Sbroscia, Matteo; Schleich, Wolfgang P; Thompson, Robert J; Williams, Jason R.
Afiliação
  • Elliott ER; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. Ethan.R.Elliott@jpl.nasa.gov.
  • Aveline DC; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Bigelow NP; Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
  • Boegel P; Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University, Ulm, Germany.
  • Botsi S; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Charron E; Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.
  • D'Incao JP; JILA, NIST, and the Department of Physics, University of Colorado, Boulder, CO, USA.
  • Engels P; Department of Physics and Astronomy, Washington State University, Pullman, WA, USA.
  • Estrampes T; Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.
  • Gaaloul N; Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
  • Kellogg JR; Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
  • Kohel JM; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Lay NE; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Lundblad N; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Meister M; Department of Physics and Astronomy, Bates College, Lewiston, ME, USA.
  • Mossman ME; German Aerospace Center (DLR), Institute of Quantum Technologies, Ulm, Germany.
  • Müller G; Department of Physics and Astronomy, Washington State University, Pullman, WA, USA.
  • Müller H; Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA.
  • Oudrhiri K; Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
  • Phillips LE; Department of Physics, University of California, Berkeley, CA, USA.
  • Pichery A; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Rasel EM; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
  • Sackett CA; Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, Orsay, France.
  • Sbroscia M; Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
  • Schleich WP; Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
  • Thompson RJ; Physics Department, University of Virginia, Charlottesville, VA, USA.
  • Williams JR; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Nature ; 623(7987): 502-508, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37968524
ABSTRACT
The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos