Your browser doesn't support javascript.
loading
Regulation of forkhead box O transcription factor by insulin signaling pathway controls the reproductive diapause of the lady beetle, Coccinella septempunctata.
Chen, Jun-Jie; Liu, Xiao-Xiao; Guo, Peng-Hui; Teets, Nicholas M; Zhou, Jin-Cheng; Chen, Wan-Bin; Luo, Qiao-Zhi; Kanjana, Nipapan; Li, Yu-Yan; Zhang, Li-Sheng.
Afiliação
  • Chen JJ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Liu XX; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Guo PH; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Teets NM; Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
  • Zhou JC; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Chen WB; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Luo QZ; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Kanjana N; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Li YY; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
  • Zhang LS; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Mi
Int J Biol Macromol ; 258(Pt 1): 128104, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37977460
ABSTRACT
In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. As a natural predator of agricultural pests, the lady beetle Coccinella septempunctata has been commercially mass-cultured and widely employed in pest management. In some insects, insulin signaling, in conjunction with the downstream transcription factor Forkhead box O (FoxO), are master regulators of multiple physiological processes involved in diapause, but it is unclear whether insulin signaling and FoxO affect the diapause of C. septempunctata. In this study, we use a combination of approaches to demonstrate that insulin signaling and FoxO mediate the diapause response in C. septempunctata. In diapausing beetles, application of exogenous insulin and knocking down expression of CsFoxo with RNA interference (RNAi) both rescued beetles from developmental arrest. In non-diapausing beetles, knocking down expression of the insulin receptor (CsInR) with RNA interference (RNAi) arrested ovarian development and decreased juvenile hormone (JH) content to levels comparable to the diapause state. Taken together, these results suggest that a shutdown of insulin signaling prompts the activation of the downstream FoxO gene, leading to the diapause phenotype.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Besouros / Diapausa Limite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Besouros / Diapausa Limite: Animals / Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article