Your browser doesn't support javascript.
loading
Bayesian safety surveillance with adaptive bias correction.
Bu, Fan; Schuemie, Martijn J; Nishimura, Akihiko; Smith, Louisa H; Kostka, Kristin; Falconer, Thomas; McLeggon, Jody-Ann; Ryan, Patrick B; Hripcsak, George; Suchard, Marc A.
Afiliação
  • Bu F; Department of Biostatistics, University of California, Los Angeles, California, USA.
  • Schuemie MJ; Department of Biostatistics, University of Michigan-Ann Arbor, Ann Arbor, Michigan, USA.
  • Nishimura A; Department of Biostatistics, University of California, Los Angeles, California, USA.
  • Smith LH; Janssen Research and Development, Raritan, New Jersey, USA.
  • Kostka K; Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
  • Falconer T; Department of Health Sciences, Northeastern University, Portland, Maine, USA.
  • McLeggon JA; The OHDSI Center at the Roux Institute, Northeastern University, Portland, Maine, USA.
  • Ryan PB; The OHDSI Center at the Roux Institute, Northeastern University, Portland, Maine, USA.
  • Hripcsak G; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Suchard MA; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
Stat Med ; 43(2): 395-418, 2024 01 30.
Article em En | MEDLINE | ID: mdl-38010062
ABSTRACT
Postmarket safety surveillance is an integral part of mass vaccination programs. Typically relying on sequential analysis of real-world health data as they accrue, safety surveillance is challenged by sequential multiple testing and by biases induced by residual confounding in observational data. The current standard approach based on the maximized sequential probability ratio test (MaxSPRT) fails to satisfactorily address these practical challenges and it remains a rigid framework that requires prespecification of the surveillance schedule. We develop an alternative Bayesian surveillance procedure that addresses both aforementioned challenges using a more flexible framework. To mitigate bias, we jointly analyze a large set of negative control outcomes that are adverse events with no known association with the vaccines in order to inform an empirical bias distribution, which we then incorporate into estimating the effect of vaccine exposure on the adverse event of interest through a Bayesian hierarchical model. To address multiple testing and improve on flexibility, at each analysis timepoint, we update a posterior probability in favor of the alternative hypothesis that vaccination induces higher risks of adverse events, and then use it for sequential detection of safety signals. Through an empirical evaluation using six US observational healthcare databases covering more than 360 million patients, we benchmark the proposed procedure against MaxSPRT on testing errors and estimation accuracy, under two epidemiological designs, the historical comparator and the self-controlled case series. We demonstrate that our procedure substantially reduces Type 1 error rates, maintains high statistical power and fast signal detection, and provides considerably more accurate estimation than MaxSPRT. Given the extensiveness of the empirical study which yields more than 7 million sets of results, we present all results in a public R ShinyApp. As an effort to promote open science, we provide full implementation of our method in the open-source R package EvidenceSynthesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vigilância de Produtos Comercializados / Vacinas / Sistemas de Notificação de Reações Adversas a Medicamentos Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vigilância de Produtos Comercializados / Vacinas / Sistemas de Notificação de Reações Adversas a Medicamentos Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos