Your browser doesn't support javascript.
loading
Isobavachin, a main bioavailable compound in Psoralea corylifolia, alleviates lipopolysaccharide-induced inflammatory responses in macrophages and zebrafish by suppressing the MAPK and NF-κB signaling pathways.
Chung, You Chul; Song, Su Jeong; Lee, Ami; Jang, Chan Ho; Kim, Chan-Sik; Hwang, Youn-Hwan.
Afiliação
  • Chung YC; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea.
  • Song SJ; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA.
  • Lee A; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
  • Jang CH; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea.
  • Kim CS; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
  • Hwang YH; Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea. Electronic address: hyhhwang@kiom.re.kr.
J Ethnopharmacol ; 321: 117501, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38012970
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia L. (PC) is widely used in traditional medicines to treat inflammatory and infectious diseases. Isobavachin (IBC) is a bioavailable prenylated flavonoid derived from PC that has various biological properties. However, little information is available on its anti-inflammatory effects and mechanisms of action. AIM OF THE STUDY In this study, we aimed to determine the anti-inflammatory effects of IBC in vitro and in vivo by conducting a mechanistic study using murine macrophages. MATERIALS AND

METHODS:

We evaluated the modulatory effects of IBC on the production of pro-inflammatory cytokines and mediators in murine macrophages. In addition, we examined whether IBC inhibits lipopolysaccharide (LPS)-induced inflammatory responses in a zebrafish model. Alterations in inflammatory response-associated genes and proteins were determined using quantitative reverse transcriptional polymerase chain reaction (RT-qPCR) and Western blotting analysis.

RESULTS:

IBC markedly reduced the overproduction of inflammatory mediators, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear translocation of nuclear factor-kappa B (NF-κB) in macrophages induced by lipopolysaccharides (LPS). In addition, excessive NO, ROS, and neutrophil level induced by LPS, were suppressed by IBC treatment in a zebrafish inflammation model.

CONCLUSIONS:

Collectively, bioavailable IBC inhibited on the inflammatory responses by LPS via MAPK and NF-κB signaling pathways in vitro and in vivo, suggesting that it may be a potential modulatory agent against inflammatory disorders.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases Ativadas por Mitógeno / Psoralea Limite: Animals Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases Ativadas por Mitógeno / Psoralea Limite: Animals Idioma: En Revista: J Ethnopharmacol Ano de publicação: 2024 Tipo de documento: Article