Your browser doesn't support javascript.
loading
USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling.
Wang, Rui; Cai, Xiaolian; Li, Xiong; Li, Jun; Liu, Xing; Wang, Jing; Xiao, Wuhan.
Afiliação
  • Wang R; College of Fisheries and Life Science, Dalian Ocean University, Dalian, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
  • Cai X; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China.
  • Li X; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
  • Li J; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
  • Liu X; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
  • Wang J; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
  • Xiao W; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China. Electronic address: w-xiao@ihb.ac.cn.
J Biol Chem ; 300(1): 105532, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38072059
ABSTRACT
HIF1α is one of the master regulators of the hypoxia signaling pathway and its activation is regulated by multiple post-translational modifications (PTMs). Deubiquitination mediated by deubiquitylating enzymes (DUBs) is an essential PTM that mainly modulates the stability of target proteins. USP38 belongs to the ubiquitin-specific proteases (USPs). However, whether USP38 can affect hypoxia signaling is still unknown. In this study, we used quantitative real-time PCR assays to identify USPs that can influence hypoxia-responsive gene expression. We found that overexpression of USP38 increased hypoxia-responsive gene expression, but knockout of USP38 suppressed hypoxia-responsive gene expression under hypoxia. Mechanistically, USP38 interacts with HIF1α to deubiquitinate K11-linked polyubiquitination of HIF1α at Lys769, resulting in stabilization and subsequent activation of HIF1α. In addition, we show that USP38 attenuates cellular ROS and suppresses cell apoptosis under hypoxia. Thus, we reveal a novel role for USP38 in the regulation of hypoxia signaling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Hipóxia Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Hipóxia Limite: Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2024 Tipo de documento: Article