Your browser doesn't support javascript.
loading
Evaluation of historical and future coastal wetland change in the Yellow and Bohai Seas using satellite images and a land use model.
Duan, Houlang; Yang, Cheng; Yu, Xiubo.
Afiliação
  • Duan H; Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China. Electronic address: duanhl@igsnrr.ac.cn.
  • Yang C; Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
  • Yu X; Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
J Environ Manage ; 351: 119986, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38171131
ABSTRACT
Predicting the future distribution of coastal wetlands and characterizing changes in the area of wetlands between historical and future periods are important for the formulation of wetland conservation and management plans. Here, we used a cellular automata-Markov model and satellite images to simulate the future distribution of coastal wetlands under the business-as-usual scenario (BAU) and ecological protection scenario (EP) along the Yellow and Bohai Seas in China; we also explored historical (from 1990 to 2020) and future (from 2020 to 2050) changes in wetlands and the factors driving these changes. We found that the area of tidal flats gradually decreased because of increases in the area of saltpans, and the aquaculture area increased because of land reclamation and the invasion of Spartina alterniflora; most of the tidal flat area was fragmented into multiple small patches. If the current rate of degradation continues (BAU), the area of tidal flats will decrease by 21.25%, and the area of saltpans and aquaculture will increase by 13.83% and 21.25%, respectively. By contrast, under EP, the area of tidal flats will increase by 13.81%, and this increase will mainly stem from the conversion of areas with S. alterniflora (174.49 km2, 33.22%) to aquaculture areas (155.17 km2, 29.54%). Clear differences between historical and future periods were observed among Liaohe Estuary, Bohai Bay, Laizhou Bay, and the Yancheng-Nantong coasts. Land reclamation is the main factor inducing changes in the area of tidal flats, saltpans, and aquaculture in Liaohe Estuary, Bohai Bay, and Laizhou Bay. Land reclamation and the S. alterniflora invasion both affect the distribution of wetlands along the Yancheng-Nantong coasts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estuários / Áreas Alagadas Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: J Environ Manage Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estuários / Áreas Alagadas Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: J Environ Manage Ano de publicação: 2024 Tipo de documento: Article