Your browser doesn't support javascript.
loading
Physiological and Pathological Significance of Chloride Channels.
Yamamura, Hisao.
Afiliação
  • Yamamura H; Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University.
Biol Pharm Bull ; 47(1): 1-13, 2024.
Article em En | MEDLINE | ID: mdl-38171770
ABSTRACT
Cl- influx and efflux through Cl- channels play a role in regulating the homeostasis of biological functions. Therefore, the hyperfunction or dysfunction of Cl- channels elicits pathological mechanisms. The Cl- channel superfamily includes voltage-gated Cl- (ClC) channels, Ca2+-activated Cl- channels (ClCa; TMEM16A/TMEM16B), cystic fibrosis transmembrane conductance regulator channels, and ligand-gated Cl- channels. These channels are ubiquitously expressed to regulate ion homeostasis, muscle tonus, membrane excitability, cell volume, survival, neurotransmission, and transepithelial transport. The activation or inhibition of Cl- channels changes the membrane potential, thereby affecting cytosolic Ca2+ signals. An elevation in cytosolic [Ca2+] triggers physiological and pathological responses in most cells. However, the roles of Cl- channels have not yet been examined as extensively as cation (Na+, Ca2+, and K+) channels. We recently reported the functional expression of (i) TMEM16A/ClCa channels in portal vein and pulmonary arterial smooth muscle cells (PASMC), pinealocytes, and brain capillary endothelial cells; (ii) TMEM16B/ClCa channels in pinealocytes; (iii) ClC-3 channels in PASMC and chondrocytes; and (iv) ClC-7 channels in chondrocytes. We also showed that the down-regulation of TMEM16A and ClC-7 channel expression was associated with cirrhotic portal hypertension and osteoarthritis, respectively, whereas the enhanced expression of TMEM16A and ClC-3 channels was involved in the pathogenesis of cerebral ischemia and pulmonary arterial hypertension, respectively. Further investigations on the physiological/pathological functions of Cl- channels will provide insights into biological functions and contribute to the screening of novel target(s) of drug discovery for associated diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Cloreto / Células Endoteliais Idioma: En Revista: Biol Pharm Bull Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Cloreto / Células Endoteliais Idioma: En Revista: Biol Pharm Bull Assunto da revista: BIOQUIMICA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article