Your browser doesn't support javascript.
loading
Catalytic Enantioselective Nucleophilic α-Chlorination of Ketones with NaCl.
Li, Zhiyang; Wang, Baocheng; Zhang, Chaoshen; Lo, Wai Yam; Yang, Liangliang; Sun, Jianwei.
Afiliação
  • Li Z; Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
  • Wang B; Shenzhen Research Institute, HKUST, No. 9 Yuexing First Rd, Shenzhen 518057, China.
  • Zhang C; Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
  • Lo WY; Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
  • Yang L; Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
  • Sun J; Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
J Am Chem Soc ; 146(4): 2779-2788, 2024 Jan 31.
Article em En | MEDLINE | ID: mdl-38238317
ABSTRACT
Catalytic enantioselective α-chlorination of ketones is a highly desirable process. Different from the conventional approaches that employ corrosive electrophilic chlorination reagents, the process disclosed here employs nucleophilic chloride, aqueous NaCl solution, and even seawater, as green inexpensive chlorine sources. This mechanistically distinct and electronically opposite approach provides facile access to diverse highly enantioenriched acyclic α-chloro ketones that are less straightforward by conventional approaches. With a chiral thiourea catalyst, a range of racemic α-keto sulfonium salts underwent enantioconvergent carbon-chlorine bond formation with high efficiency and excellent enantioselectivity under mild conditions. The sulfonium motif plays a crucial triple role by permitting smooth dynamic kinetic resolution to take place via a chiral anion binding mechanism in a well-designed phase-transfer system. This protocol represents a new general platform for the asymmetric nucleophilic α-functionalization of carbonyl compounds.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China