Your browser doesn't support javascript.
loading
Tumor therapy by targeting extracellular hydroxyapatite using novel drugs: A paradigm shift.
Tantawy, Mohammed N; McIntyre, J Oliver; Yull, Fiona; Calcutt, M Wade; Koktysh, Dmitry S; Wilson, Andrew J; Zu, Zhongliang; Nyman, Jeff; Rhoades, Julie; Peterson, Todd E; Colvin, Daniel; McCawley, Lisa J; Rook, Jerri M; Fingleton, Barbara; Crispens, Marta Ann; Alvarez, Ronald D; Gore, John C.
Afiliação
  • Tantawy MN; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  • McIntyre JO; Departments of Radiology and Radiological Sciences, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Yull F; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  • Calcutt MW; Departments of Radiology and Radiological Sciences, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Koktysh DS; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
  • Wilson AJ; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.
  • Zu Z; Department of Obstetrics and Gynecology, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Nyman J; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
  • Rhoades J; Mass Spectrometry Research Center of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.
  • Peterson TE; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.
  • Colvin D; Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, USA.
  • McCawley LJ; Department of Obstetrics and Gynecology, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Rook JM; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
  • Fingleton B; Departments of Radiology and Radiological Sciences, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Crispens MA; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
  • Alvarez RD; Orthopaedic Surgery, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
  • Gore JC; Orthopaedic Surgery, Vanderbilt Univerity Medical Center, Nashville, Tennessee, USA.
Cancer Med ; 13(3): e6812, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38239047
ABSTRACT

BACKGROUND:

It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects.

METHODS:

We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods.

RESULTS:

Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone.

CONCLUSION:

Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cancer Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Cancer Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos