Your browser doesn't support javascript.
loading
Nonlinear Nano-Imaging of Interlayer Coupling in 2D Graphene-Semiconductor Heterostructures.
Luo, Wenjin; Song, Renkang; Whetten, Benjamin G; Huang, Di; Cheng, Xinbin; Belyanin, Alexey; Jiang, Tao; Raschke, Markus B.
Afiliação
  • Luo W; MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China.
  • Song R; Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA.
  • Whetten BG; MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China.
  • Huang D; Department of Physics and JILA, University of Colorado, Boulder, CO, 80309, USA.
  • Cheng X; MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China.
  • Belyanin A; MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China.
  • Jiang T; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA.
  • Raschke MB; MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering and School of Physics Science and Engineering Tongji University, Shanghai, 200092, China.
Small ; 20(24): e2307345, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38279570
ABSTRACT
The emergent electronic, spin, and other quantum properties of 2D heterostructures of graphene and transition metal dichalcogenides are controlled by the underlying interlayer coupling and associated charge and energy transfer dynamics. However, these processes are sensitive to interlayer distance and crystallographic orientation, which are in turn affected by defects, grain boundaries, or other nanoscale heterogeneities. This obfuscates the distinction between interlayer charge and energy transfer. Here, nanoscale imaging in coherent four-wave mixing (FWM) and incoherent two-photon photoluminescence (2PPL) is combined with a tip distance-dependent coupled rate equation model to resolve the underlying intra- and inter-layer dynamics while avoiding the influence of structural heterogeneities in mono- to multi-layer graphene/WSe2 heterostructures. With selective insertion of hBN spacer layers, it is shown that energy, as opposed to charge transfer, dominates the interlayer-coupled optical response. From the distinct nano-FWM and -2PPL tip-sample distance-dependent modification of interlayer and intralayer relaxation by tip-induced enhancement and quenching, an interlayer energy transfer time of τ ET ≈ ( 0 . 35 - 0.15 + 0.65 ) $\tau _{\rm ET} \approx (0.35^{+0.65}_{-0.15})$  ps consistent with recent reports is derived. As a local probe technique, this approach highlights the ability to determine intrinsic sample properties even in the presence of large sample heterogeneity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small / Small (Weinh., Internet) / Small (Weinheim. Internet) Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small / Small (Weinh., Internet) / Small (Weinheim. Internet) Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China