Your browser doesn't support javascript.
loading
Ambient light immunity of a frequency-modulated continuous-wave (FMCW) LiDAR chip.
Opt Express ; 32(3): 3997-4012, 2024 Jan 29.
Article em En | MEDLINE | ID: mdl-38297609
ABSTRACT
The interference between a frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) and other LiDARs or sunlight was theorized, considering the spatial overlap, frequency overlap, and intensity ratio. It has been concluded that the interference probability between LiDARs can be lower than a safety standard value for autonomous vehicles when the number of the resolution points of a single LiDAR is increased sufficiently and that the interference with incoherent sunlight does not occur. Due to the coherent detection of FMCW, such ambient light immunity is much better than time-of-flight LiDAR. The dependence of the interference on the wavelength range, sweep bandwidth, and sweep period was also observed experimentally using a silicon (Si) photonics FMCW LiDAR chip incorporating slow-light grating beam scanners. It was shown that the interference can be suppressed by increasing the number of resolution points and changing their common parameters moderately. Regarding the contamination of sunlight, unwanted beam shift due to heating was observed, although it will be suppressed simply by wavelength filtering.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article