Your browser doesn't support javascript.
loading
Functionally responsive hydrogels with salt-alkali sensitivity effectively target soil amelioration.
Qi, Le; Xiao, Xiao; Liu, Ting; Ren, Zhong; Ren, Wei; Gao, Qifeng; Liu, Mengting; Wei, Pangzhi; Lai, Yongkang; Yao, Weipeng; An, Huanhuan; Zhang, Lan; Li, Chuncheng; Luo, Shenglian; Luo, Xubiao.
Afiliação
  • Qi L; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Xiao X; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Liu T; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Ren Z; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Ren W; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Gao Q; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Institute for Total and Utilization of Resources, China Nonusferr Metals (Guilin) Geology and Mining Co., Ltd., Guilin 541004, China.
  • Liu M; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Wei P; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Lai Y; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Yao W; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • An H; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Zhang L; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Li C; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Luo S; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang 3300
  • Luo X; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Jiangxi Province for agricultural environmental pollution prevention and control in red soil hilly region, School of life sciences, Jing
Sci Total Environ ; 918: 170350, 2024 Mar 25.
Article em En | MEDLINE | ID: mdl-38307264
ABSTRACT
The long-standing crisis of soil salinization and alkalization poses a significant challenge to global agricultural development. High soil salinity-alkalinity, water dispersion, and nutrient loss present major hurdles to soil improvement. Novel environmentally friendly gels have demonstrated excellent water retention and slow-release capabilities in agricultural enhancement. However, their application for improving saline-alkali soil is both scarce and competitive. This study proposes a new strategy for regulating saline-alkali soil using gel-coated controlled-release soil modifiers (CWR-SRMs), where radical-polymerized gels are embedded on the surface of composite gel beads through spray coating. Characterization and performance analysis reveal that the three-dimensional spatial network structure rich in hydrophilic groups exhibits good thermal stability (first-stage weight loss temperature of 257.7 °C in thermogravimetric analysis) and encapsulation efficiency for fulvic acid­potassium (FA-K), which can enhance soil quality in saline-alkali environments. The molecular chain relaxation under saline-alkali conditions promotes a synergistic effect of swelling and slow release, endowing it with qualifications as a water reservoir, Ca2+ source unit, and slow-release body. The results of a 6 weeks incubation experiment on 0-20 cm saline-alkaline soil with different application gradients showed that the gradient content had a significant effect on the soil improvement effect. Specifically, the T2 (the dosage accounted for 1 % of soil mass) treatment significantly increases water retention (30 % ~ 90 %), and nutrient levels (30 % ~ 50 %), while significantly decreasing soil sodium colloid content (30 % ~ 60 %) and soil pH (10 % ~ 15 %). Furthermore, PCA analysis indicates that the addition of 1 % CWR-SRMs as amendments can significantly adjust the negative aspects of soil salinity and alkalinity. This highlights the excellent applicability of CWR-SRMs in improving saline-alkali agricultural ecosystems, demonstrating the potential value of novel environmentally friendly gels as an alternative solution for soil challenges persistently affected by adverse salinity and alkalinity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article