Your browser doesn't support javascript.
loading
SALL4 promotes cancer stem-like cell phenotype and radioresistance in oral squamous cell carcinomas via methyltransferase-like 3-mediated m6A modification.
Huang, Junhong; Li, Huan; Yang, Zihui; Liu, Rong; Li, Yahui; Hu, Yating; Zhao, Shengnan; Gao, Xiang; Yang, Xinjie; Wei, Jianhua.
Afiliação
  • Huang J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Li H; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Yang Z; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Liu R; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Li Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Hu Y; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Zhao S; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Gao X; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Yang X; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
  • Wei J; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Chin
Cell Death Dis ; 15(2): 139, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38355684
ABSTRACT
Radioresistance imposes a great challenge in reducing tumor recurrence and improving the clinical prognosis of individuals having oral squamous cell carcinoma (OSCC). OSCC harbors a subpopulation of CD44(+) cells that exhibit cancer stem-like cell (CSC) characteristics are involved in malignant tumor phenotype and radioresistance. Nevertheless, the underlying molecular mechanisms in CD44( + )-OSCC remain unclear. The current investigation demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in CD44(+) cells and promotes CSCs phenotype. Using RNA-sequencing analysis, we further showed that Spalt-like transcription factor 4 (SALL4) is involved in the maintenance of CSCs properties. Furthermore, the overexpression of SALL4 in CD44( + )-OSCC cells caused radioresistance in vitro and in vivo. In contrast, silencing SALL4 sensitized OSCC cells to radiation therapy (RT). Mechanistically, we illustrated that SALL4 is a direct downstream transcriptional regulation target of METTL3, the transcription activation of SALL4 promotes the nuclear transport of ß-catenin and the expression of downstream target genes after radiation therapy, there by activates the Wnt/ß-catenin pathway, effectively enhancing the CSCs phenotype and causing radioresistance. Herein, this study indicates that the METTL3/SALL4 axis promotes the CSCs phenotype and resistance to radiation in OSCC via the Wnt/ß-catenin signaling pathway, and provides a potential therapeutic target to eliminate radioresistant OSCC.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Adenina / Carcinoma de Células Escamosas / Neoplasias de Cabeça e Pescoço Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Death Dis Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Adenina / Carcinoma de Células Escamosas / Neoplasias de Cabeça e Pescoço Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Death Dis Ano de publicação: 2024 Tipo de documento: Article