Your browser doesn't support javascript.
loading
Different responses of marine microalgae Phaeodactylum tricornutum upon exposures to WAF and CEWAF of crude oil: A case study coupled with stable isotopic signatures.
Lou, Yadi; Wang, Ying; Li, Shiyue; Yu, Fuwei; Liu, Xing; Cong, Yi; Li, Zhaochuan; Jin, Fei; Zhang, Mingxing; Yao, Ziwei; Wang, Juying.
Afiliação
  • Lou Y; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Wang Y; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China. Electronic address: wangying@nmemc.org.cn.
  • Li S; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai
  • Yu F; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China; School of Chemical, Dalian University of Technology
  • Liu X; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Cong Y; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Li Z; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Jin F; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Zhang M; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Yao Z; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
  • Wang J; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian 116023, China.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38401215
ABSTRACT
Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes Químicos da Água / Petróleo / Poluição por Petróleo / Diatomáceas / Microalgas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes Químicos da Água / Petróleo / Poluição por Petróleo / Diatomáceas / Microalgas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China