Your browser doesn't support javascript.
loading
Atomic Imaging of Multi-Dimensional Ruddlesden-Popper Interfaces in Lead-Halide Perovskites.
Liu, Yusheng; Liu, Suya; Xu, Liang; Ma, Mengmeng; Zhang, Xuliang; Chen, Xiao; Wei, Fei; Song, Bin; Cheng, Tao; Yuan, Jianyu; Shen, Boyuan.
Afiliação
  • Liu Y; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
  • Liu S; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
  • Xu L; Shanghai Nanoport, Thermo Fisher Scientific, Building A, No.2537, Jinke Road. Pudong District, Shanghai, China.
  • Ma M; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
  • Zhang X; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
  • Chen X; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
  • Wei F; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
  • Song B; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.
  • Cheng T; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.
  • Yuan J; Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
  • Shen B; Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Small ; 20(31): e2400013, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38433394
ABSTRACT
Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China