Hg4(Te2O5)(SO4): A Giant Birefringent Sulfate Crystal Triggered by a Highly Selective Cation.
J Am Chem Soc
; 146(11): 7868-7874, 2024 Mar 20.
Article
em En
| MEDLINE
| ID: mdl-38457655
ABSTRACT
Sulfate crystals are often criticized for their low birefringence. The small anisotropic SO4 group is becoming the biggest bottleneck hindering the application of sulfates in optical functional materials. In this study, we report a new method to significantly enhance the birefringence of sulfates. The title compound increases the birefringence recording of sulfates to 0.542@546 nm, which is significantly larger than that of the commercial birefringent crystal of TiO2 (0.306@546.1 nm). At the infrared wavelength, the birefringence of Hg4(Te2O5)(SO4) can be up to 0.400@1064 nm, which is also much larger than the infrared birefringent crystal of YVO4 (0.209@1064 nm). In addition, it also has a wide transparency range, high thermal stability, and excellent environmental stability, making it a potential birefringent material. Hg4(Te2O5)(SO4) features a novel two-dimensional layered structure composed of [Hg4(Te2O5)]2+ layers separated by isolated (SO4)2- tetrahedra. This compound was designed by introducing a highly selective cation in a tellurite sulfate system. The low valence low coordination cations connect with tellurite groups only, making the sulfate isolated in the structure. The steric repulsive action of the isolated SO4 tetrahedra may regulate the linear and lone pair groups arranged in a way that favors large birefringence. This method can be proven by theoretical calculations. PAWED studies showed that the large birefringence originated from the synergistic effect of (Hg2O2)2-, (Te2O5)2-, and (SO4)2- units, with a contribution ratio of 42.17, 37.92, and 19.88%, respectively. Our work breaks the limitation of low birefringence in sulfates and opens up new possibilities for their application as birefringent crystals.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2024
Tipo de documento:
Article