Your browser doesn't support javascript.
loading
Greater up-modulation of intra-individual brain signal variability makes a high-load cognitive task more arduous for older adults.
Li, Hong; Han, Ying; Niu, Haijing.
Afiliação
  • Li H; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China.
  • Han Y; Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, 100053, China; School of Biomedical Engineering, Hainan University, Haikou, 570228, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China; National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China. Electronic address: hanying@xwh.ccmu.edu.cn.
  • Niu H; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China. Electronic address: niuhjing@bnu.edu.cn.
Neuroimage ; 290: 120577, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38490585
ABSTRACT
The extent to which brain responses are less distinctive across varying cognitive loads in older adults is referred to as neural dedifferentiation. Moment-to-moment brain signal variability, an emerging indicator, reveals not only the adaptability of an individual's brain as an inter-individual trait, but also the allocation of neural resources within an individual due to ever-changing task demands, thus shedding novel insight into the process of neural dedifferentiation. However, how the modulation of intra-individual brain signal variability reflects behavioral differences related to cognitively demanding tasks remains unclear. In this study, we employed functional near-infrared spectroscopy (fNIRS) imaging to capture the variability of brain signals, which was quantified by the standard deviation, during both the resting state and an n-back task (n = 1, 2, 3) in 57 healthy older adults. Using multivariate Partial Least Squares (PLS) analysis, we found that fNIRS signal variability increased from the resting state to the task and increased with working memory load in older adults. We further confirmed that greater fNIRS signal variability generally supported faster and more stable response time in the 2- and 3-back conditions. However, the intra-individual level analysis showed that the greater the up-modulation in fNIRS signal variability with cognitive loads, the more its accuracy decreases and mean response time increases, suggesting that a greater intra-individual brain signal variability up-modulation may reflect decreased efficiency in neural information processing. Taken together, our findings offer new insights into the nature of brain signal variability, suggesting that inter- and intra-individual brain signal variability may index distinct theoretical constructs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética Limite: Aged / Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética Limite: Aged / Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2024 Tipo de documento: Article