Your browser doesn't support javascript.
loading
High-Performance Thermoelectric Fibers from Metal-Backboned Polymers for Body-Temperature Wearable Power Devices.
Wang, Ning; Zeng, Kaiwen; Zheng, Yuanyuan; Jiang, Hongyu; Yang, Yibei; Zhang, Yifeng; Li, Dingke; Yu, Sihui; Ye, Qian; Peng, Huisheng.
Afiliação
  • Wang N; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Zeng K; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Zheng Y; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Jiang H; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Yang Y; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Zhang Y; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Li D; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Yu S; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Ye Q; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
  • Peng H; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
Angew Chem Int Ed Engl ; 63(23): e202403415, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38573437
ABSTRACT
Metal-backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear-induced orientation method to construct a flexible nickel-backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 µW ⋅m-1 K-2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China