Your browser doesn't support javascript.
loading
KLF15 maintains contractile phenotype of vascular smooth muscle cells and prevents thoracic aortic dissection by interacting with MRTFB.
Fang, Guangming; Tian, Yexuan; Huang, Shan; Zhang, Xiaoping; Liu, Yan; Li, Yulin; Du, Jie; Gao, Shijuan.
Afiliação
  • Fang G; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Tian Y; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Huang S; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Zhang X; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Liu Y; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Li Y; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China.
  • Du J; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China. Electronic address:
  • Gao S; Collaborative Innovation Centre for Cardiovascular Disorders, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China. Electronic address:
J Biol Chem ; 300(5): 107260, 2024 May.
Article em En | MEDLINE | ID: mdl-38582447
ABSTRACT
Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Aneurisma da Aorta Torácica / Miócitos de Músculo Liso / Fatores de Transcrição Kruppel-Like / Dissecção da Aorta Torácica Limite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Aneurisma da Aorta Torácica / Miócitos de Músculo Liso / Fatores de Transcrição Kruppel-Like / Dissecção da Aorta Torácica Limite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China