Your browser doesn't support javascript.
loading
Advancing 3D Dental Implant Finite Element Analysis: Incorporating Biomimetic Trabecular Bone with Varied Pore Sizes in Voronoi Lattices.
Alemayehu, Dawit Bogale; Todoh, Masahiro; Huang, Song-Jeng.
Afiliação
  • Alemayehu DB; Division of Human Mechanical Systems and Design, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
  • Todoh M; Division of Mechanical and Aerospace Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
  • Huang SJ; Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
J Funct Biomater ; 15(4)2024 Apr 04.
Article em En | MEDLINE | ID: mdl-38667551
ABSTRACT
The human mandible's cancellous bone, which is characterized by its unique porosity and directional sensitivity to external forces, is crucial for sustaining biting stress. Traditional computer- aided design (CAD) models fail to fully represent the bone's anisotropic structure and thus depend on simple isotropic assumptions. For our research, we use the latest versions of nTOP 4.17.3 and Creo Parametric 8.0 software to make biomimetic Voronoi lattice models that accurately reflect the complex geometry and mechanical properties of trabecular bone. The porosity of human cancellous bone is accurately modeled in this work using biomimetic Voronoi lattice models. The porosities range from 70% to 95%, which can be achieved by changing the pore sizes to 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. Finite element analysis (FEA) was used to examine the displacements, stresses, and strains acting on dental implants with a buttress thread, abutment, retaining screw, and biting load surface. The results show that the Voronoi model accurately depicts the complex anatomy of the trabecular bone in the human jaw, compared to standard solid block models. The ideal pore size for biomimetic Voronoi lattice trabecular bone models is 2 mm, taking in to account both the von Mises stress distribution over the dental implant, screw retention, cortical bone, cancellous bone, and micromotions. This pore size displayed balanced performance by successfully matching natural bone's mechanical characteristics. Advanced FEA improves the biomechanical understanding of how bones and implants interact by creating more accurate models of biological problems and dynamic loading situations. This makes biomechanical engineering better.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Funct Biomater Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Funct Biomater Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão