Your browser doesn't support javascript.
loading
Efficient Proton-exchange Membrane Fuel Cell Performance of Atomic Fe Sites via p-d Hybridization with Al Dopants.
Liu, Yarong; Li, Jiaxin; Lv, Zunhang; Fan, Haiyang; Dong, Feilong; Wang, Changli; Chen, Xianchun; Liu, Rui; Tian, Chongao; Feng, Xiao; Yang, Wenxiu; Wang, Bo.
Afiliação
  • Liu Y; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Li J; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Lv Z; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Fan H; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Dong F; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Wang C; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Chen X; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Liu R; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Tian C; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Feng X; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Yang W; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Wang B; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Beijing 100081, P. R. China.
J Am Chem Soc ; 146(18): 12636-12644, 2024 May 08.
Article em En | MEDLINE | ID: mdl-38676645
ABSTRACT
Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals is of great importance for boosting the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). Herein, we developed a core-shell rambutan-like nanocarbon catalyst (FeAl-RNC) with atomically dispersed Fe-Al atom pairs from metal-organic framework (MOF) material. Experimental and theoretical results demonstrate that the strong p-d orbital hybridization between Al and Fe results in an asymmetric electron distribution with moderate adsorption strength of oxygen intermediates, rendering enhanced intrinsic ORR activity. Additionally, the core-shell rambutan-like structure of FeAl-RNC with abundant micropores and macropores can enhance the density of active sites, stability, and transport pathways in PEMFC. The FeAl-RNC-based PEMFC achieves excellent activity (68.4 mA cm-2 at 0.9 V), high peak power (1.05 W cm-2), and good stability with only 7% current loss after 100 h at 0.7 V under H2-O2 condition.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article