Your browser doesn't support javascript.
loading
A microfluidic microalgae detection system for cellular physiological response based on an object detection algorithm.
Zhou, Shizheng; Chen, Tianhui; Fu, Edgar S; Zhou, Teng; Shi, Liuyong; Yan, Hong.
Afiliação
  • Zhou S; School of Computer Science and Technology, Hainan University, Haikou 570228, China. yanhong@hainanu.edu.cn.
  • Chen T; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
  • Fu ES; School of Computer Science and Technology, Hainan University, Haikou 570228, China. yanhong@hainanu.edu.cn.
  • Zhou T; Graduate School of Computing and Information Science, University of Pittsburgh, PA 15260, USA.
  • Shi L; School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.
  • Yan H; School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.
Lab Chip ; 24(10): 2762-2773, 2024 05 14.
Article em En | MEDLINE | ID: mdl-38682283
ABSTRACT
The composition of species and the physiological status of microalgal cells serve as significant indicators for monitoring marine environments. Symbiotic with corals, Symbiodiniaceae are more sensitive to the environmental response. However, current methods for evaluating microalgae tend to be population-based indicators that cannot be focused on single-cell level, ignoring potentially heterogeneous cells as well as cell state transitions. In this study, we proposed a microalgal cell detection method based on computer vision and microfluidics, which combined microscopic image processing, microfluidic chip and convolutional neural network to achieve label-free, sheathless, automated and high-throughput microalgae identification and cell state assessment. By optimizing the data import, training process and model architecture, we solved the problem of identifying tiny objects at the micron scale, and the optimized model was able to perform the tasks of cell multi-classification and physiological state assessment with more than 95% mean average precision. We discovered a novel transition state and explored the thermal sensitivity of three clades of Symbiodiniaceae, and discovered the phenomenon of cellular heat shock at high temperatures. The evolution of the physiological state of Symbiodiniaceae cells is very important for directional cell evolution and early warning of coral ecosystem health.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Microalgas Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Microalgas Idioma: En Revista: Lab Chip Assunto da revista: BIOTECNOLOGIA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China