Your browser doesn't support javascript.
loading
The Michaelis-Menten Reaction at Low Substrate Concentrations: Pseudo-First-Order Kinetics and Conditions for Timescale Separation.
Eilertsen, Justin; Schnell, Santiago; Walcher, Sebastian.
Afiliação
  • Eilertsen J; Mathematical Reviews, American Mathematical Society, 416 4th Street, Ann Arbor, MI, 48103, USA.
  • Schnell S; Department of Biological Sciences and Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA. santiago.schnell@nd.edu.
  • Walcher S; Mathematik A, RWTH Aachen, 52056, Aachen, Germany.
Bull Math Biol ; 86(6): 68, 2024 May 04.
Article em En | MEDLINE | ID: mdl-38703247
ABSTRACT
We demonstrate that the Michaelis-Menten reaction mechanism can be accurately approximated by a linear system when the initial substrate concentration is low. This leads to pseudo-first-order kinetics, simplifying mathematical calculations and experimental analysis. Our proof utilizes a monotonicity property of the system and Kamke's comparison theorem. This linear approximation yields a closed-form solution, enabling accurate modeling and estimation of reaction rate constants even without timescale separation. Building on prior work, we establish that the sufficient condition for the validity of this approximation is s 0 ≪ K , where K = k 2 / k 1 is the Van Slyke-Cullen constant. This condition is independent of the initial enzyme concentration. Further, we investigate timescale separation within the linear system, identifying necessary and sufficient conditions and deriving the corresponding reduced one-dimensional equations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conceitos Matemáticos Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Conceitos Matemáticos Idioma: En Revista: Bull Math Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos