Your browser doesn't support javascript.
loading
Mapping and candidate gene analysis of QTLs for grain shape in a rice chromosome segment substitution line Z485 and breeding of SSSLs.
You, Jing; Ye, Li; Wang, Dachuan; Zhang, Yi; Xiao, Wenwen; Wei, Mi; Wu, Ruhui; Liu, Jinyan; He, Guanghua; Zhao, Fangming; Zhang, Ting.
Afiliação
  • You J; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Ye L; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Wang D; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Zhang Y; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Xiao W; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Wei M; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Wu R; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Liu J; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • He G; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Zhao F; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
  • Zhang T; Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China.
Mol Breed ; 44(6): 39, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38766512
ABSTRACT
Grain shape is one of the most important factors that affects rice yield. Cloning novel grain shape genes and analyzing their genetic mechanisms are crucial for high yield breeding. In this study, a slender grain CSSL-Z485 with 3-segments substitution in the genetic background of Nipponbare was constructed in rice. Cytological analysis showed that the longer grain length of Z485 was related to the increase in glume cell numbers, while the narrower grain width was associated with the decrease in cell width. Three grain shape-related quantitative trait locus (QTLs), including qGL12, qGW12, and qRLW12, were identified through the F2 population constructed from a cross between Nipponbare and Z485. Furthermore, four single segment substitution lines (SSSLs, S1-S4) carrying the target QTLs were dissected from Z485 by MAS. Finally, three candidate genes of qGL12 for grain length and qGW12 for grain width located in S3 were confirmed by DNA sequencing, RT-qPCR, and protein structure prediction. Specifically, candidate gene 1 encodes a ubiquitin family protein, while candidate genes 2 and 3 encode zinc finger proteins. The results provide valuable germplasm resources for cloning novel grain shape genes and molecular breeding by design. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01480-x.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Breed Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mol Breed Ano de publicação: 2024 Tipo de documento: Article