Your browser doesn't support javascript.
loading
Establishment of human post-vaccination SARS-CoV-2 standard reference sera.
Xiang, Jinhua; Katz, Louis; Winokur, Patricia L; Chaudhary, Ashok; Digmann, Barbara; Bradford, Rebecca; Rashid, Sujatha; Ghosh, Sudakshina; Robertson, Angela; Menetski, Joseph; Xu, Miao; Gao, Peng; Chen, Catherine Z; Lee, Taylor; Poelaert, Brittany; Eastman, Richard T; Hall, Matthew D; Stapleton, Jack T.
Afiliação
  • Xiang J; Iowa City Veterans Administration Healthcare System, 601 Highway 6, Iowa City, IA 52246, USA; The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  • Katz L; Impact Life Blood Services, 5500 Lakeview Parkway, Davenport, IA 52807, USA.
  • Winokur PL; The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  • Chaudhary A; Iowa City Veterans Administration Healthcare System, 601 Highway 6, Iowa City, IA 52246, USA; The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  • Digmann B; Impact Life Blood Services, 5500 Lakeview Parkway, Davenport, IA 52807, USA.
  • Bradford R; American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA; The Biodefense and Emerging Infections Research Resources Repository (BEI Resources), 10801 University Boulevard, Manassas, VA 20110, USA.
  • Rashid S; American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA; The Biodefense and Emerging Infections Research Resources Repository (BEI Resources), 10801 University Boulevard, Manassas, VA 20110, USA.
  • Ghosh S; American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA; The Biodefense and Emerging Infections Research Resources Repository (BEI Resources), 10801 University Boulevard, Manassas, VA 20110, USA.
  • Robertson A; American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA; The Biodefense and Emerging Infections Research Resources Repository (BEI Resources), 10801 University Boulevard, Manassas, VA 20110, USA.
  • Menetski J; Foundation for the National Institutes of Health, Bethesda, MD 20814, USA.
  • Xu M; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Gao P; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Chen CZ; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Lee T; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Poelaert B; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Eastman RT; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Hall MD; National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA.
  • Stapleton JT; Iowa City Veterans Administration Healthcare System, 601 Highway 6, Iowa City, IA 52246, USA; The University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA. Electronic address: jack-stapleton@uiowa.edu.
J Immunol Methods ; 530: 113698, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38823574
ABSTRACT
There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26.COV2·S, Johnson and Johnson), or recombinant baculovirus-expressed spike protein in a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). No subjects had a history of clinical SARS-CoV-2 infection, and sera were screened with confirmation that there were no nucleocapsid antibodies detected to suggest natural infection. Twice frozen sera were aliquoted, and serum antibodies were characterized for SARS-CoV-2 spike protein binding (estimated WHO antibody binding units/ml), spike protein competition for ACE-2 binding, and SARS-CoV-2 spike protein pseudotyped lentivirus transduction. These reagents are available for distribution to the research community (BEI Resources), and should allow the direct comparison of antibody neutralization results between different laboratories. Further, these sera are an important tool to evaluate the functional neutralization activity of vaccine-induced antibodies against emerging SARS-CoV-2 variants of concern. IMPORTANCE The explosion of COVID-19 demonstrated how novel coronaviruses can rapidly spread and evolve following introduction into human hosts. The extent of vaccine- and infection-induced protection against infection and disease severity is reduced over time due to the fall in concentration, and due to emerging variants that have altered antibody binding regions on the viral envelope spike protein. Here, we pooled sera obtained from individuals who were immunized with different SARS-CoV-2 vaccines and who did not have clinical or serologic evidence of prior infection. The sera pools were characterized for direct spike protein binding, blockade of virus-receptor binding, and neutralization of spike protein pseudotyped lentiviruses. These sera pools were aliquoted and are available to allow inter-laboratory comparison of results and to provide a tool to determine the effectiveness of prior vaccines in recognizing and neutralizing emerging variants of concern.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes de Neutralização / Anticorpos Neutralizantes / Vacinas contra COVID-19 / SARS-CoV-2 / COVID-19 / Vacina BNT162 / Vacina de mRNA-1273 contra 2019-nCoV / Anticorpos Antivirais Limite: Humans Idioma: En Revista: J Immunol Methods Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes de Neutralização / Anticorpos Neutralizantes / Vacinas contra COVID-19 / SARS-CoV-2 / COVID-19 / Vacina BNT162 / Vacina de mRNA-1273 contra 2019-nCoV / Anticorpos Antivirais Limite: Humans Idioma: En Revista: J Immunol Methods Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos