Your browser doesn't support javascript.
loading
Temperature-dependent electroluminescence of red high-In-content MQWs of dual-wavelength micro-LED.
Opt Express ; 32(11): 20412-20420, 2024 May 20.
Article em En | MEDLINE | ID: mdl-38859153
ABSTRACT
Temperature-dependent electroluminescence (TDEL) measurements have been employed to investigate the carrier transport and recombination processes of InGaN red micro-LED based on dual-wavelength InGaN/GaN MQWs structure. EL peak energy and carrier transport of the red micro-LED both show temperature dependence, due to temperature-induced changes in defect activation. In addition, the current density at which the blue peak of the low-In-content appears in the EL spectrum varies with temperature. As the temperature increases, the blue peak of the low In component tends to appear at higher current densities, which may be attributed to the increase in thermally activated defects hindering the injection of holes into the low-In-content MQWs further away from p-GaN. Furthermore, the IQEs of the high-In-content MQWs are estimated from the TDEL method and then reveal the temperature-dependent efficiency droop. The IQE decreases as temperature increases, particularly above 50 K, where it drops sharply due to temperature-dependent nonradiative recombination. And the two different variation trends in IQE of MQWs with high and low In content reveal a competitive mechanism in carrier distribution, implying that more escaping holes from high-In-content MQWs will further reduce red emission efficiency but enhance carrier injection and blue emission in low-In-content MQWs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article