Your browser doesn't support javascript.
loading
PT-seq: A method for metagenomic analysis of phosphorothioate epigenetics in complex microbial communities.
Yuan, Yifeng; DeMott, Michael S; Byrne, Shane R; Dedon, Peter C.
Afiliação
  • Yuan Y; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • DeMott MS; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Byrne SR; Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
bioRxiv ; 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38895297
ABSTRACT
Among dozens of known epigenetic marks, naturally occurring phosphorothioate (PT) DNA modifications are unique in replacing a non-bridging phosphate oxygen with redox-active sulfur and function in prokaryotic restriction-modification and transcriptional regulation. Interest in PTs has grown due to the widespread distribution of the dnd, ssp, and brx genes among bacteria and archaea, as well as the discovery of PTs in 5-10% of gut microbes. Efforts to map PTs in complex microbiomes using existing next-generation and direct sequencing technologies have failed due to poor sensitivity. Here we developed PT-seq as a high-sensitivity method to quantitatively map PTs across genomes and metagenomically identify PT-containing microbes in complex genomic mixtures. Like other methods for mapping PTs in individual genomes, PT-seq exploits targeted DNA strand cleavage at PTs by iodine, followed by sequencing library construction using ligation or template switching approaches. However, PT-specific sequencing reads are dramatically increased by adding steps to heat denature the DNA, block pre-existing 3'-ends, fragment DNA after T-tailing, and enrich iodine-induced breaks using biotin-labeling and streptavidin beads capture. Iterative optimization of the sensitivity and specificity of PT-seq is demonstrated with individual bacteria and human fecal DNA.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos