Your browser doesn't support javascript.
loading
A study on production of hydrogen using Al scrap feedstock.
Singh, Robin; Guduru, Ramesh Kumar; Vij, Rakesh Kumar.
Afiliação
  • Singh R; Department of Chemistry, School of Energy Technology, PDEU Gandhinagar, 382007, Gandhinagar, India.
  • Guduru RK; Department of Mechanical Engineering, School of Technology, PDEU Gandhinagar, 382007, Gandhinagar, India. Ramesh.Guduru@sot.pdpu.ac.in.
  • Vij RK; School of Energy Technology, PDEU Gandhinagar, 382007, Gandhinagar, India.
Article em En | MEDLINE | ID: mdl-38954333
ABSTRACT
A sustainable future, concerning the energy transformation of a country, heavily relies on the availability of energy resources, particularly renewables such as solar, wind, hydropower, and clean hydrogen. Among these, hydrogen is the most promising energy source due to its high calorific value, ranging between 120 and 140 MJ/kg. It has the potential to lead the market in various industries such as power generation, steel, chemical, petrochemical, and automotive. Significant research has been going on in hydrogen production technologies to reduce costs and improve competitiveness with fossil fuels. One such potential approach includes the use of metal-water reactions, which offer unique opportunities for producing clean hydrogen and other valuable byproducts. However, the quantity of hydrogen produced varies depending on the metal feedstock, type of electrolyte, and the activator or catalyst, used in combination with water. This latest work discusses recent progress on hydrogen production and the effects of variations in different parameters on the process, with a focus on aluminum (Al)-water reactions. Investigations have been conducted and reported on the effect of various activators with different concentrations, the quantity of aluminum scrap feedstock, and the volume of the electrolyte on the kinetics of the metal-water reactions and hydrogen production. Sodium hydroxide (NaOH) was observed to be more effective than potassium hydroxide (KOH) in promoting metal-water reactions. These activator-assisted metal-water reactions help produce clean hydrogen, along with other value-added products such as hydroxides. This work clearly sheds light on the potential utilization of industrial aluminum scrap as feedstock for producing clean hydrogen.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia