Your browser doesn't support javascript.
loading
3D-printed porous titanium suture anchor: a rabbit lateral femoral condyle model.
Wu, Lien-Chen; Hsieh, Yueh-Ying; Hsu, Ting-Shuo; Liu, Po-Yi; Tsuang, Fon-Yih; Kuo, Yi-Jie; Chen, Chia-Hsien; Van Huynh, Tin; Chiang, Chang-Jung.
Afiliação
  • Wu LC; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
  • Hsieh YY; Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
  • Hsu TS; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan.
  • Liu PY; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
  • Tsuang FY; Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
  • Kuo YJ; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
  • Chen CH; Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
  • Van Huynh T; Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei City, 10022, Taiwan.
  • Chiang CJ; Spine Tumor Center, National Taiwan University Hospital, Taipei City, 10022, Taiwan.
BMC Musculoskelet Disord ; 25(1): 559, 2024 Jul 18.
Article em En | MEDLINE | ID: mdl-39026178
ABSTRACT

BACKGROUND:

The inclusion of a connecting path in a porous implant can promote nutrient diffusion to cells and enhance bone ingrowth. Consequently, this study aimed to evaluate the biomechanical, radiographic, and histopathological performance of a novel 3D-printed porous suture anchor in a rabbit femur model.

METHODS:

Three test groups were formed based on the type of suture anchor (SA) Commercial SA (CSA, Group A, n = 20), custom solid SA (CSSA, Group B, n = 20), and custom porous SA (CPSA, Group C, n = 20). The SAs were implanted in the lateral femoral condyle of the right leg in each rabbit. The rabbits (New Zealand white rabbits, male, mean body weight of 2.8 ± 0.5 kg, age 8 months) underwent identical treatment and were randomized into experimental and control groups via computer-generated randomization. Five rabbits (10 femoral condyles) were euthanized at 0, 4, 8, and 12 weeks post-implantation for micro-CT, histological analysis, and biomechanical testing.

RESULTS:

At 12 weeks, the CPSA showed a higher BV/TV (median 0.7301, IQR 0.7276-0.7315) than the CSSA and CSA. The histological analysis showed mineralized osteocytes near the SA. At 4 weeks, new bone was observed around the CPSA and had penetrated its porous structure. By 12 weeks, there was no significant difference in ultimate failure load between the CSA and CPSA.

CONCLUSIONS:

We demonstrated that the innovative 3D-printed porous suture anchor exhibited comparable pullout strength to conventional threaded suture anchors at the 12-week postoperative time-point period. Furthermore, our porous anchor design enhanced new bone formation and facilitated bone growth into the implant structure, resulting in improved biomechanical stability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Titânio / Âncoras de Sutura / Fêmur / Impressão Tridimensional Limite: Animals Idioma: En Revista: BMC Musculoskelet Disord Assunto da revista: FISIOLOGIA / ORTOPEDIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Titânio / Âncoras de Sutura / Fêmur / Impressão Tridimensional Limite: Animals Idioma: En Revista: BMC Musculoskelet Disord Assunto da revista: FISIOLOGIA / ORTOPEDIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Taiwan