High-Order Harmonic Generation in Photoexcited Three-Dimensional Dirac Semimetals.
J Phys Chem Lett
; 15(31): 8101-8107, 2024 Aug 08.
Article
em En
| MEDLINE
| ID: mdl-39087866
ABSTRACT
High-order harmonic generation (HHG) in condensed matter is highly important for potential applications in various fields, such as materials characterization, all-optical switches, and coherent light source generation. Linking HHG to the properties or dynamic processes of materials is essential for realizing these applications. Here, a bridge has been built between HHG and the transient properties of materials through the engineering of interband polarization in a photoexcited three-dimensional Dirac semimetal (3D-DSM). It has been found that HHG can be efficiently manipulated by the electronic relaxation dynamics of 3D-DSM on an ultrafast time scale of several hundred femtoseconds. Furthermore, time-resolved HHG (tr-HHG) has been demonstrated to be a powerful spectroscopy method for tracking electron relaxation dynamics, enabling the identification of electron thermalization and electron-phonon coupling processes and the quantitative extraction of electron-phonon coupling strength. This demonstration provides insights into the active control of HHG and measurements of the electron dynamics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Chem Lett
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China